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Abstract. We study corrections to electroweak precision variables in a model with strongly interacting
singlet Higgs particles.

1 Introduction

With the close of the LEP experiments the structure of
the weak interactions as a gauge theory has been fully
confirmed. The only missing ingredient at the moment is
direct evidence of the Higgs sector. The LEP-200 exper-
iment gives a lower bound of mH > 113GeV [1]. The
precision measurements at LEP-1 and SLC imply a rela-
tively low Higgs mass (< 170GeV) [2], though some lin-
gering doubts remain because of the different values for
the hadronic and leptonic data.

If the Higgs boson is indeed light and of the standard
model type, it should be easy to find at the LHC. How-
ever, the precision data do not prove that this is indeed
the case. There are still two possibilities for the Higgs bo-
son to remain hidden at the LHC. The first is that the
Higgs boson is simply too heavy to be produced. Within
the standard model this implies strong interactions. In
that case the limit on the Higgs boson mass, which comes
from one-loop calculations, is not reliable. While the two-
loop corrections are small and cannot provide for a fit to
a heavy Higgs boson, the full higher order results could
be different. There are some indications in the literature
that resumming bubble graphs in the Higgs propagator
can lead to a saturation of the radiative corrections. The
second way to hide a Higgs boson at the LHC is by the in-
troduction of singlet Higgs fields [3–11]. In this case there
are two effects. One is mixing of the doublet and singlet
Higgs boson, leading to a split of the Higgs peak into dif-
ferent peaks, each being less significant than a single stan-
dard model peak. The second effect is the possibility of
decay into invisible singlet particles. The invisible decay
width is not necessarily small, so one could have a light
Higgs particle with a large invisible width. One can also
combine mixing and invisible decay, to generate a Higgs
signal spread out over an arbitrary energy range with a
large invisible decay fraction. Such a Higgs signal would
be extremely hard to identify at the LHC, since there is no

peak in the signal compared to the background. The signal
would be an overall enhancement of the missing energy.
For this to be useful, one has to know the background very
precisely. The background cannot be calculated precisely
at the LHC; however, at a high energy e+e− collider there
is no problem in looking for this signal. It is important to
point out here that an additional phenomenological ad-
vantage of introducing the singlet Higgs fields is that they
would be prime candidates for self-interacting cold dark
matter. In fact, the model introduced in the next section
is the simplest one with WIMPs.

There is therefore a realistic possibility that the LHC
will not see evidence for the Higgs sector. That means
that the only information would consist of the LEP preci-
sion measurements. It is for this reason, that we decided
to look more carefully at the radiative corrections in the
invisible Higgs scenario. As both a large width and strong
interactions can play a role we decided to study the ra-
diative corrections in the so-called stealthy Higgs model
[9].

We describe the model in Sect. 2. In Sect. 3 we discuss
some analytical results for the simplest case, to gain some
understanding on the difference between the all order bub-
ble resummation from the 1/N expansion and the results
of finite order in perturbation theory. In Sect. 4 we give
numerical results.

2 The Higgs O(N) singlet model

To illustrate the consequences of a hidden sector coupled
to the Higgs boson in a possibly strong way, we want to
consider the case of scalar gauge singlets – let us call them
“phions” – added to the SM. To deal with the case of
strong interactions we introduce an N -plet of such phions.
This allows us to use non-perturbative 1/N methods. Ne-
glecting all the fermions and gauge couplings for the mo-
ment, our model consists of the SM Higgs sector coupled
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to an O(N) symmetric scalar model. Similar models can
be found in [5–7]. Our Lagrangian density is

Lscalar = LHiggs + Lphion + Linteraction,

where

LHiggs = −∂µφ
+∂µφ − λ

(
φ+φ − v2

2

)2

,

Lphion = −1
2
∂µϕ∂µϕ − 1

2
m2

P ϕ2 − κ

8N
(ϕ2)2,

Linteraction = − ω

2
√
N

ϕ2φ+φ. (1)

Here we use a metric with signature (− + ++). φ =
(σ + v + iπ1, π2 + iπ3)/21/2 is the complex Higgs doublet
of the SM with the vacuum expectation value 〈0|φ|0〉 =
(v/21/2, 0), v = 246GeV. Here, σ is the physical Higgs
boson and πi=1,2,3 are the three Goldstone bosons. ϕ =
(ϕ1, . . . , ϕN ) is a real vector with 〈0|ϕ|0〉 = 0. If we would
allow for a non-vanishing vacuum expectation value for the
phions, the mass matrix would become non-diagonal and
Higgs–phion mixings would occur. The lightest scalar of
the gauged model would have a reduced coupling to the
vector bosons by the cosine of a mixing angle. We will not
discuss this possibility further, as we are mainly interested
in the effects coming from the Higgs width. If we look at
the gauged model we can choose the unitary gauge to ro-
tate away the unphysical Goldstone bosons. This is gauge
invariant, because in the following we only consider loops
of gauge singlet particles. Note that the vacuum induced
mass term for the phions is suppressed by a factor 1/N1/2.

In the case of large non-standard couplings ω and κ,
loop induced operators with external Higgs and phion
fields appear and are not negligible. They are only sup-
pressed by powers of 1/N . For the discussion of Higgs
signatures, it is enough to focus on the Higgs propagator.

As shown above the propagator is modified by the
phions. In the leading order in 1/N , which is found in
the limit N → ∞, the Higgs self-energy is given by an
infinite sum of phion bubble terms. Regularization of the
divergent bubbles, i.e. absorbing the divergent and some
constant contributions into the bare parameters, is done
by subtraction of the logarithmically divergent part. With
this regularization, the Euclidean bubble integral

Ibubble(s = −p2,m2
φ)

=
1
2

∫
d4k

(2π)4
1

k2 +m2
φ

1
(k + p)2 +m2

φ

becomes above the phion threshold

I(s, µ2,m2
φ) = Ibubble(s,m2

φ)− Ibubble(0, µ2)

= − 1
32π2


log

(
m2

φ

µ2

)
− 2 +

√
1− 4m2

φ

s

×


log


1 +

√
1− 4m2

φ

s

1−
√
1− 4m2

φ

s


− iπ




 , (2)

with the arbitrary renormalization scale µ. In the case
of massless phions this simply reduces to I(s, µ2, 0) =
−1/(32π2)(log(s/(eµ)2) − iπ). The bubble sum is the ge-
ometric series of the integral times a coupling.

Adding all regularized terms gives the inverse Higgs
propagator

D−1
H (s, µ2) = −s+M2

H − i
√
sΓSM (s) +Σ(s, µ2),

Σ(s, µ2) =
−ω2v2I(s, µ2,m2

φ)
1 + κI(s, µ2,m2

φ)
. (3)

Above the phion threshold, s > 4m2
φ, Σ develops an imag-

inary part which results in a Higgs width depending on
the non-standard parameters leading to observable effects.
The independent SM Higgs width is added, too. To find
an explicit expression for the upper propagator, remember
that within the SM the Higgs mass, or better the quartic
Higgs coupling, is a free parameter.

Defining the mass by the location of the resonance on
the real p2-axis fixes our renormalization scale µ by the
equation

Re(Σ(M2
H , µ2)) = 0. (4)

Using this relation, the abbreviations ω̃2 = ω2/(32π2),
κ̃ = κ/(32π2) and r(x) = (1− 4m2

φ/x)
1/2, one finds, after

splitting the integral in its real and imaginary part,

I(s, µ2,m2
φ)|µfixed = a(s) + ib(s),

a(s) =
(√

1− (2πκ̃r(M2
H))2 − 1

)/
(2κ̃)

+r(M2
H) log

(
1 + r(M2

H)
1− r(M2

H)

)
− r(s) log

(
1 + r(s)
1− r(s)

)
,

b(s) = πr(s),

an expression for the Higgs propagator, in terms of run-
ning quantities:

D−1
H (s) = −s+MH(s)2 − i

√
sΓH(s),

MH(s)2 = M2
H − ω̃2v2 a(s) + κ̃(a(s)2 + b(s)2)

(1 + κ̃a(s))2 + (κ̃b(s))2
,

ΓH(s) = ΓSM(s) +
ω̃2v2
√
s

b(s)
(1 + κ̃a(s))2 + (κ̃b(s))2

. (5)

Remember that this expression is only valid above the
phion threshold.

The advantage of this model is that one can study sep-
arately the effect of a strong coupling ω of the standard
model Higgs to the hidden sector and of strong interac-
tions κ within the hidden sector. Thereby one separates
the effects of a large width from the effects of strong in-
teractions. We mention that the standard model in the
1/N expansion [12–15] is reproduced within this model
by taking m2

H = 2λv2 and ω = κ = 2λ.
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3 Analytical considerations

In this chapter we discuss some analytical results. At first
sight this would appear to be a hopeless undertaking, be-
cause of the complicated form of the propagator. Also
there seems to be no reason to do so. Naively one would
take simply the non-perturbative Higgs propagator, insert
it in the diagrams and calculate the result numerically.
This has indeed been tried in the literature [13–15]. How-
ever, this procedure has a problem due to the presence of
a tachyon in the propagator and one will not get finite
results. In order to better understand what is going on,
it is therefore advantageous to attempt an analytic cal-
culation. This is clearly not possible in the general case.
We will study therefore the simplified case mP = 0 and
κ = 0. Physically we have an unstable Higgs particle with
a width determined by the coupling ω. The Higgs propa-
gator simplifies to

D−1
H = −s+m2

H + Γ log(−s/m2
H − iε),

with Γ = (ω2v2)/(32π2). We limit the discussion in this
chapter to the so-called ρ parameter, which is the ratio of
neutral to charged current strengths. We have

ρ = G0
F /G+

F .

At the tree level ρ = 1; the correction is given by

δρ = ρ − 1 = (δM2
W − cos2(θW)δM2

Z)/M
2
W ,

where δM2
W and δM2

Z are the corrections to the vector
boson masses at k2 = 0. The ρ parameter is one of the
parameters measured in the electroweak tests. It is related
to the commonly used T parameter by T = (1− ρ−1)/α.

3.1 The standard model

Within the standard model the one-loop Higgs mass de-
pendent correction to δρ is simplest described in the uni-
tary gauge. Here only one diagram contributes, the
tadpole-like graphs containing the 2H–2W vertex cancel
in δρ. One finds, using dimensional regularization, with n
the dimension of spacetime,

δρ =
−g2

(2π)4i

(
1− 1

n

)

×
(∫

dnk(k2 +M2
W )−1(k2 +m2

H)−1

− 1
cos2(θW)

∫
dnk(k2 +M2

Z)
−1(k2 +m2

H)−1
)

.

The contribution from these Higgs dependent graphs
is still infinite, of the form

δρ = − 3g2

64π2 tg
2(θW)(2/(n − 4) + log(m2

H) + finite). (6)

The infinite piece cancels against the infinities coming
from the pure W boson graphs, that are independent of

the form of the Higgs propagator. The explicit form of
the finite part is quite complicated. To get a simple re-
sult for the Higgs mass dependence only, we subtract the
contribution for the fictitious case mH = 0:

δρ(SM;mH)− δρ(SM;mH = 0)

= − 3g2

64π2

(
1

cos2(θW)
m2

H

m2
H − M2

Z

log(m2
H/M2

Z)

− m2
H

m2
H − M2

W

log(m2
H/M2

W )
)

.

In the limit tg(θW) → 0 this simplifies to

δρ(SM;mH)− δρ(SM;mH = 0)

= − 3g2

64π2 tg
2(θW)

(
m2

H

m2
H − M2

W

log(m2
H/M2

W )
)

,

showing the close connection between the ρ parameter
and the hypercharge coupling. If we further assume that
mH 	 MW one can simply express the ρ parameter by
the integral

δρ =
g2

(2π)4i
tg2(θW)

(
1− 1

n

)∫
dnk(k2)−1(k2 +m2

H)−1.

This form is useful for the more elaborate calculations
later on. In the large Higgs mass limit one finds therefore

δρ(SM;mH)− δρ(SM;mH = 0)

= − 3g2

64π2 tg
2(θW) log(m2

H/M2
W ). (7)

3.2 Two-loop result

The correction δρ2 at the two-loop level can be straight-
forwardly calculated using the techniques of [16,17]. Expe-
rience from the standard model where it was found that
δρ2 ≈ m2

H would lead one to expect that in our model
δρ2 ≈ ω2v2/m2

H . However an explicit calculation gives

δρ2 =
3g2ω2v2

4096π4

(
M2

W

(m2
H − M2

W )2
log2(m2

H/M2
W )

− 1
cos2(θW)

M2
Z

(m2
H − M2

Z)2
log2(m2

H/M2
Z)
)

.

This shows that for large Higgs mass the two-loop correc-
tion is suppressed compared to naive expectations. This
might be a clue as to why the standard model coefficient of
the two-loop corrections to electroweak quantities is very
small. Indeed the inclusion of the two-loop heavy Higgs
corrections within the standard model do not significantly
affect the electroweak fits. This might therefore indicate
that the first large corrections would appear at the three-
loop level in the ρ parameter. Indeed it is known from
calculations in the standard model, that only at the two-
loop level there are large changes in the Higgs propagator.
Since the ρ parameter probes the Higgs propagator indi-
rectly, two-loop corrections in the Higgs propagator trans-
late into thee-loop corrections in the ρ parameter. In any
case the above result shows that it is important to check
what happens at higher order.
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3.3 All orders perturbation theory

To calculate the all orders results we work in the limit
where the Higgs mass is large and tg(θW) small, so that
we can ignore the mass of the vector bosons within the
diagrams. Going to Euclidean space a diagram with n-
phion bubbles can then be written in the form∫

d4k
1
k2

1
(k2 +m2

H)n+1 log
n(k2/m2

H).

Going to polar coordinates the 1/k2 factor cancels in
the d4k integration, thereby simplifying the integrals.
Keeping the coupling constants we find

δρ =
3g2tg2(θW)

64π2

∞∑
n=1

∫ ∞

0
(−∆)n

logn(s)
(s+ 1)n+1 ds,

where

∆ =
ω2v2

32π2m2
H

.

The integrals can be performed explicitly, giving

δρ =
3g2tg2(θW)

64π2

∞∑
n=2

(−2π∆)n

n
|Bn|(1− 21−n),

where Bn are the Bernouilli numbers. Since the odd
Bernouilli numbers are 0, only the graphs with an even
number of phion bubbles contribute, which explains the
suppression found in the previous section. The series found
above is clearly divergent. The question is whether it is re-
summable. The Borel sum is defined as follows. Given the
above series

∑∞
n=2 an∆

n we form the new “Borel” series
F (z) =

∑∞
n=2 anz

n−1/(n − 1)!. We find

F (z) =
π

sin(πz)
− 1

z
.

The Borel transform has an infinity of poles for posi-
tive values of the coupling constant ∆. This means that
there is no unambiguous way to resum the perturbative
series, so that non-perturbative effects much be present.
We will return to the significance of this result for vacuum
instability in the next section.

3.4 Non-perturbative contribution

Given the fact that the perturbation theory does not con-
verge, we try to calculate the corection to δρ by first re-
summing the phion bubbles within the propagator and
then inserting the dressed propagator in the diagram. The
most efficient way to calculate δρ is to use the Kallén–
Lehmann representation for the Higgs propagator:

DH(k2) =
∫

ds′σ(s′)/(k2 + s′ − iε).

Figuratively speaking we thereby write the Higgs prop-
agator as the sum (integral) of a number of Higgses with
different masses. The contribution to δρ is then a weighted
sum over the different Higgs masses:

δρ =
∫

ds′σ(s′)δρ(m2
H = s′), (8)

where δρ(m2
H = s′) is given in (7). For the propagator to

be physical it is necessary that the spectral weight σ(s′)
is positive and is unequal to zero, only for s′ > 0. The
latter is not the case; the resummed propagator contains
at least a tachyon. Suppose that the location of a tachyon
pole is given by m2

T = −s0m
2
H , with s0 the solution of the

equation s0 + 1 + ∆ log(s0) = 0. The residue at the pole
is given by −s0/(∆+ s0). Let us assume for the moment
that there is only a single tachyon pole. The pole structure
of the propagator is examined in detail in the appendix
for different values of the parameters. There it is found
that depending on the parameters there can be in general
more than one unphysical pole, however for the case at
hand, i.e., κ̃ = 0 and massless phions, there is indeed only
one tachyonic pole.The simplest way to treat this tachyon
pole is to subtract it from the propagator. In that case
one finds an at first sight acceptable spectral density:

σ(s′) =
πΓ

| − s+m2
H + Γ log(s/m2

H)− iπΓ |2 . (9)

When one tries to calculate the ρ parameter with this
spectral density one runs into a problem. The contribu-
tion to δρ coming from a single Higgs boson graph con-
tains a divergence 1/(n − 4), that gets canceled by the
pure vector boson graphs. For the generalized propagator
this translates into a contribution 1/(n− 4)

∫
σ(s′)ds′. So

in order to get a finite contribution to δρ one needs to
fulfill the condition

∫
σ(s′)ds′ = 1. This condition is au-

tomatically fulfilled at each order in perturbation theory,
because of the renormalizability of the theory. The con-
dition is however not fulfilled for the tachyon-subtracted
resummed propagator. By a simple contour integral one
sees that the difference is indeed due to the tachyon pole:∫

ds′σ(s′) = ∆/(∆+ s0). (10)

A graph of the factor as a function of ∆ is given in Fig. 1.
The effect is non-perturbative as s0 ≈ exp(−1/∆) for
∆ → 0. Also for very large width the effect becomes small
as then s0 → 1. The effect is numerically largest for∆ = 1.
The presence of the tachyon can be understood as an arte-
fact of the approximation we made. We took into account
only the bubble graphs connecting a Higgs boson with two
phions. This means that we are effectively dealing with
a φ3 theory, thereby having no lowest energy state. The
presence of the non-perturbative tachyon thus signifies the
possibility of the vacuum being unstable. This vacuum in-
stability was already indicated in the previous subsection
by the singularities of the Borel transform on the positive
real axis. It is similar to the instability of the QED vac-
uum against formation of electron–positron pairs in the



R. Akhoury et al.: Interplay between perturbative and non-perturbative effects in the stealthy Higgs model 501

presence of strong electric fields [18]. Indeed such consid-
erations already exist in the literature [19]. Using these
results and deforming the relevant contours it is easy to
determine the imaginary part of the vacuum to vacuum
phase (δ) which is related to the probability of vacuum
decay. We find

Imδ =
−iπ

e1/∆ + 1
.

This expression exhibits the same qualitative behavior as
outlined above.

In the full theory, the spectral density does not just
contain the two-phion cut; there are also two-Higgs and
multi-phion cuts. Since the full theory has a vacuum the
tachyon pole should disappear when all graphs are taken
into account. However, finding the exact propagator would
mean solving the theory completely. This is not possible at
present. As long as we are limited to summing partial sets
of graphs such instabilities are bound to be present. To
still get a reasonable idea of the possible effects of a large
Higgs width, we have to find a phenomenological prescrip-
tion to deal with this problem. The prescription has to sat-
isfy two conditions: first it should reproduce perturbation
theory, second it should satisfy the Kallén–Lehmann rep-
resentation for the Higgs propagator. We chose therefore
to do the following. We start with the resummed propaga-
tor and subtract the tachyon pole. The resulting spectral
density is positive definite and non-zero only for s′ > 0.
It is however not correctly normalized, so we multiply the
spectral density with the non-perturbative correction fac-
tor (∆+ s0)/∆. This way we keep the shape of the spec-
tral density the same, basically assuming that the spectral
density is dominated by the two-phion states. This is not
a perfect procedure of course, but lacking the means to
solve the theory exactly, it appears the best one can do.
From the numbers in Fig. 1 we expect the result not to be
too far from the truth.

4 Numerical results

The above considerations are applied in this section to the
calculation of δρ and of the S parameter in the stealthy
Higgs model.

From the discussion in Sects. 2,3 we may write down
the following formulae for these parameters. Consider first
the difference of the ρ parameter in the stealthy Higgs
model and in the standard model:

δρ(sth,mH)− δρ(SM,mH)

=
3g2

64π2

∫ ∞

0
dsσ̄(s)

(
f(s,M2)− 1

c2
f(s,M2

z )

−f(mH ,M2) +
1
c2

f(mH ,M2
z )
)

, (11)

f(s,M2) =
s

s − M2 ln
( s

M2

)
. (12)

0.0 1.0 2.0 3.0 4.0 5.0
∆

0.7

0.8

0.9

1.0

∆/
(∆

+
s 0)

mϕ = 0
κ  ~ = 0

Fig. 1. Non-perturbative propagator correction factor

For the case of massless phions and with κ = 0, the density
σ̄ is

σ̄(s) =
Γ + s0m

2
H(

−s+m2
H + Γ ln

s

m2
H

)2

+ π2Γ 2

. (13)

The more general cases are discussed in the appendix.
There can be more than one unphysical pole and a sub-
traction has to be made for all of them. The renormaliza-
tion factor was determined numerically using the expres-
sion for the spectral density that is obtained after sub-
tracting the tachyon pole and checked against the expres-
sion (30) in the appendix.

Customarily, the S parameter is defined by

α

4c2s2S =
ΠZZ(M2

Z)− ΠZZ(0)
M2

Z

. (14)

From this it is straightforward to obtain the following for-
mula for the difference of this parameter in the stealthy
Higgs model and in the SM:

S(sth,mH)− S(SM,mH)

=
−1
π

∫
σ̄(s)ds(H(s)− H(m2

H)), (15)

H(m2
H) =

(
m2

H

M2
Z

)2(
−1/12− 1/12F (mH)− 1

12
ln

M2
Z

m2
H

)

+
m2

H

m2
H − M2

Z

(
−3/4 ln M2

Z

m2
H

)

+
m2

H

M2
Z

(
7/24 + 1/3F (mH) + 1/4 ln

M2
Z

m2
H

)
−2− F (mH), (16)

F (mH) =
∫ 1

0
ln
(
x2 +

m2
H

M2
Z

(1− x)
)

. (17)
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0.0 200.0 400.0
ΓH (GeV)

−0.08

−0.04

0.00

T
st

ea
lth

y−
T

S
M

mH = 150GeV
mϕ = 60GeV
κ  ~ = 0

Fig. 2. Correction to the T parameter in the stealth model
without self-interactions among the phions
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Fig. 3. Correction to the S parameter in the stealth model
without self-interactions among the phions

These formulae can now be used to study the radia-
tive corrections for physically interesting cases. As a first
example we take mH = 150GeV, mφ = 60GeV, κ = 0.
These parameters are of interest, since they correspond to
a typical case, where no evidence would have been seen
at LEP, where the LHC is insensitive, but where a linear
e+e− collider would discover the Higgs boson. With re-
spect to the radiative corrections there are two questions
to be discussed here. The first is whether there are signif-
icant differences between the stealth model and the stan-
dard model. We see from Figs. 2 and 3 that the difference
is actually quite small, of the order of a few 10−2, which
is within the errors of the measurements. The corrections
behave as if one had a somewhat heavier Higgs as in the
standard model. If a large width ΓH gives a contribution,
precisely mimicking a heavier Higgs, there is of course still
no way to determine whether the precision measurements
prefer the standard model or the stealth model. Therefore
it is useful to consider the Higgs mass (large Higgs mass)
independent contribution 6πS+8/3π cos2(θW)T and see if

0.0 100.0 200.0 300.0 400.0
ΓH (GeV)

0.0
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0.4

6π
(S

st
e

a
lth

y−
S S

M
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8π
C

W

2 (T
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e
a

lth
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T
S

M
)/

3

mH = 150GeV
mϕ = 60GeV
κ  ~ = 0

Fig. 4. Correction to a (large) Higgs mass independent quan-
tity in the stealth model without self-interactions among the
phions
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0.00

T
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N
−

T
1−
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op v=250GeV

Fig. 5. Correction to the T parameter in the standard model,
1/N expansion minus one-loop correction

deviations are present. This combination is given in Fig. 4.
We see that a difference is present; however, it is quite
small. This example shows, that the precision tests can-
not rule out the stealth model as the differences between
it and the standard model are small. However the stealth
model appears to always mimic a Higgs heavier than the
standard model Higgs, for the same value of the mass pa-
rameter. Therefore the stealth model cannot generate cor-
rections that would behave as if the Higgs were very light,
which appears to be preferred by the leptonic data.

Another case of special interest is the standard model
in the 1/N limit, which has also been discussed in [12–15].
This model corresponds to m2

H = 2λv2, ω = κ = 2λ. The
graphs for the radiative corrections are given in Figs. 5
and 6. It is to be noted here that in the analysis of the
1/N limit, we are keeping the vector boson mass fixed.
Thus in the figures for this case, we have used v/N1/2

for the vacuum expectation value. We see that for a large
range of the Higgs mass, up to about 1TeV there is es-
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Fig. 7. Correction to a one-loop (large) Higgs mass inde-
pendent quantity in the standard mode, 1/N expansion minus
one-loop correction

sentially no change compared to the standard model one-
loop corrections. After this scale the strong interactions
take over and have the effect, both in S and T , of increas-
ing the large Higgs mass growth of the radiative correc-
tions. This does not happen with S and T in the same
way, so that there is a Higgs mass dependence in the sum
6πS + 8/3π cos2(θW)T as seen in Fig. 7. This appears to
be contrary to the statements in the literature, where a
saturation of the radiative corrections is found. There are
two important points worth mentioning here. First, we re-
strict ourselves in this analysis to values of approximately
mH ≤ 1TeV. This because of the way we have set up the
formalism in Sect. 2 – this constraint is the only way to
satisfy (4). It is therefore possible that the saturation sets
in at larger values of the Higgs mass. This possibility will
be studied in a separate publication. Secondly, it is not
clear how previous authors have treated problems with
the tachyon. Based on Fig. 7, we therefore conclude that
after resummation of the bubble graphs, the large Higgs
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Fig. 8. Correction to the T parameter in the stealth model
with self-interactions among the phions
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Fig. 9. Correction to the S parameter in the stealth model
with self-interactions among the phions

mass case appears to be ruled out by the LEP precision
data.

Finally Figs. 8–10 illustrate the κ dependence of the
difference of the S and T parameters for the stealth and
standard models. The conclusions here are the similar to
the κ = 0 case.
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Appendix

In this appendix we will discuss the question of the renor-
malization of the Higgs propagator spectral density in
some more detail than in the main text.
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Fig. 10. Correction to a (large) Higgs mass independent
quantity in the stealth model with self-interactions among the
phions

It was argued in Sect. 3.4 that a necessary condition
for the finiteness of the theory is∫

σ(s′)ds′ = 1. (18)

Since the resummed propagator contains a tachyon pole
which is an artifact of the approximation procedure, we
choose to subtract this pole. The resulting spectral density
σ′(s′) is however not properly normalized. Indeed, let us
note that we may write for the inverse propagator near a
zero at k2 = −m2:

D−1
H (k2) = (k2 +m2)

(
1 +

∫
1

k2 + µ2 − iε
λ(µ2)dµ2

)
.

(19)
One can relate the λ(µ2) to σ(µ2) by considering the imag-
inary part of the above:

ImD−1
H (k2) = − ImDH(k2)

|DH(k2)|2 =
−πσ(−k2)
|DH(k2)|2

= π(k2 +m2)λ(−k2), (20)

or

λ(µ2) =
σ(µ2)

(µ2 − m2)|DH(k2)|2 . (21)

The contribution to λ from the two-body cuts can now be
easily obtained from that of σ:

λ2(µ2) =
Γ (µ2)

µ2 − m2 . (22)

In the above, for the case of massless phions with only
three-point interactions, Γ (µ2) = Γ introduced earlier,
and for the case of massive phions,

Γ (µ2) = Γ

(
1− 4m2

φ

µ2

)1/2

. (23)

We thus get the following in the approximation of keeping
only the two-body cuts:

D−1
H (k2) = (k2 +m2) (24)

×
(
1 +

∫ ∞

c

Γ (µ2)
(k2 + µ2 − iε)(µ2 − m2)

dµ2
)

.

For massless phions the lower cut c is 0 and for massive
ones it is 4m2

φ. The residue z of the propagator at a pole
k2 = −m2 is given by (k2 = −s)

z−1 =
−d
ds

D−1
H (s)

∣∣∣∣
s=m2

. (25)

As an example, the residue at the tachyon pole m2
T =

−s0m
2
H is easily seen to be as follows for massless phions:

z−1 = 1 +
Γ

s0m2
H

. (26)

Now we are ready to determine the renormalization of
σ′ (call it σ̄) such that

∫
σ̄(s′)ds′ = 1. Noting that at a

pole s′ = m2, σ(s′) = zδ(s − m2) we get, if such is pole is
to be removed,

1 =
∫

ds′σ(s′) = z +
∫

ds′σ′(s′). (27)

From this we see that

σ̄ =
(

1
1− z

)
σ′. (28)

As discussed in Sect. 3.4 it gives the renormalization factor
of (∆+ s0)/∆ for the tachyon in the massless phion case.

Such a procedure is quite general and may be used for
any number of consistent subtractions. Thus if there are
multiple unphysical poles that we wish to remove, then
the corresponding renormalized spectral density may be
written as

σ̄ =
(

1
1− Σzi

)
σ′, (29)

where the zi denote the z-factors at the positions of these
unphysical poles.

When the complete model is treated, i.e., the four-
point couplings are included and the phions are massive,
the unphysical pole structure is much more complicated.
The corresponding pole positions, spectral functions and
the zi functions may be obtained from the description of
the model in Sect. 1. We will summarize the various cases
below.
(1) κ̃ = 0,mφ = 0. In this case as discussed earlier there
is only one tachyon pole.
(2) κ̃ = 0,mφ �= 0. Here again there is only one pole.
Define

Γ2 =
m2

H

cH − 2

and

cH = r(m2
H) ln

1 + r(m2
H)

1− r(m2
H)

.
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Fig. 11. Change of pole position due to variation of the pa-
rameters

Then when Γ > Γ2 > 0, the pole is a tachyon, otherwise
when Γ2 < 0 the pole is physical as well as in the case
when Γ < Γ2 and Γ2 > 0.
(3) κ̃ �= 0,mφ = 0. In this case there are always two
tachyonic poles.
(4) κ̃ �= 0,mφ �= 0. This is the most general case. Here,
there are always two poles. One pole is always tachyonic
and the other one behaves as in (2). Let us define s̄ as the
solution to

1 + κ̃a(s̄) = 0.

Then the tachyonic pole is always located to the left of
−s̄. The other pole can be tachyonic or physical, depend-
ing on the region of parameter space. This phenomenon,
where the pole switches from unphysical to physical and
vice versa has been noted earlier in [6]. In Fig. 11, we have
depicted an example of how the pole positions change in
this manner as the parameters of the theory are varied. Of
course the subtraction procedure introduced earlier and
the subsequent renormalization must be carried out only

for the unphysical poles. If si denote the positions of the
unphysical poles, then the corresponding renormalization
factors zi are given by

z−1
i = 1 +

Γ

[1 + κ̃ā(si)]2

(
1
si

− 2m2
φ

s2
i r̄(si)

ln
1 + r̄(si)
r̄(si)− 1

)
,

(30)
where

r̄(s) =

√
1 +

4m2
φ

s
,

and ā is the same as a with the replacement r → r̄.
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